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Abstract 

In the last decade the documentation of cultural heritage by means of laser range scanning and 
photogrammetric techniques has gained ever more importance. The amount of data collected by these means 
may be huge, and adequate presentation of 3D documented cultural heritage is still a challenge. For small 
and limited projects consisting of only a few range scans, the software provided with the laser scanner can 
be used for viewing and presenting the data. Large projects, consisting of hundreds of scan positions as well 
as projects where more and more data are collected over time, still have to deal with a massive reduction of 
the 3D data for presentation. Public demonstrations in museums, as for example shown by the Digital 
Michelangelo project, are already state of the art. The combination of huge point-base models and mesh 
models with high resolution textures in one viewer, the first type of models resulting from the data of laser 
range scans and the second type of models resulting from a photogrammetric reconstruction process, is still 
not available. Currently viewers are mostly limited to show models that are based on only one geometric 
primitive – either points or polygons – at once. 

In the FWF funded START project “The Domitilla Catacomb in Rome. Archaeology, Architecture and Art 
History of a Late Roman Cemetery” – which is running for 5 years now – 3D point data was collected for 
the geometrical documentation of the vast gallery system of the Domitilla Catacomb, resulting in point data 
of some 2 billion (10^9) point samples. Furthermore high quality textured mesh models of the nearly 90 late 
Roman / early Christian paintings were generated with photogrammetric tools. In close cooperation with the 
Institute of Computer Graphics and Algorithms of the Vienna University of Technology the point cloud 
viewer Scanopy was improved for the combined presentation of huge point clouds and high quality textured 
mesh models in the same viewer. Our viewer is already capable of rendering huge point clouds, so for this a 
method to manage the vast amount of textures had to be found. Therefore we integrated a virtual texturing 
algorithm, which allows using the original photographs of the paintings taken on site to be mapped to the 
mesh models, resulting in a high quality texture for all mesh models. The photographs have a resolution of 
11 Megapixels. Due to shortcomings in the programs used in the photogrammetric processing pipeline we 
scaled down the photographs to a 7.3 Megapixel resolution. Currently 608 of these images are used for 
texturing 29 mesh models. The work on the mesh models is still ongoing, and when all mesh models will be 
completed, we will use some 2000 images for texturing about 90 mesh models. These virtually textured 
models can show the details of each painting in the Domitilla Catacomb. When used in a virtual walkthrough 
the paintings in the catacomb can be presented to a broad audience under best lighting conditions, even the 
paintings normally not accessible by the public. 
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1. INTRODUCTION 
The survey of huge cultural heritage objects was in the past a very exhausting work and in many cases not 
executable. The virtual presentation of such objects is still limited to relative simple reconstructions looking 
more like computer games than objects originating from reality. From the more than 60 late Roman-early 
Christian catacombs in Rome the bigger ones were never surveyed in their entirety due to lack of adequate 
surveying techniques. Archaeologically more interesting areas of these catacombs like family hypogea or 
painted tombs have been surveyed already very early (beginning with the end of the 16th century) with 
different methods but an overall survey was never made. With the upcoming of 3D laser scanners the 
geometrical survey of such objects became possible. 

Since 2006 the vast gallery system of one of these catacombs, the Domitilla Catacomb, has been surveyed 
within the scope of the FWF funded interdisciplinary START-project “The Domitilla Catacomb in Rome. 
Archaeology, Architecture and Art History of a Late Roman Cemetery” (situated at the Austrian Academy of 
Science, Institute of the Study of Ancient Culture, project leader Dr. Norbert Zimmermann, financed by the 
Austrian Ministry of Education, Sciences and Infrastructure). Although the research history in different 
scientific disciplines reaches back 400 years the catacomb is insufficiently studied from a scientific point of 
view. Most importantly a complete documentation is missing, as this is a prerequisite for a scientific debate 
of modern methodical questions. On the base of a digital documentation a virtual model can be created. This 
model provides a frame for modern research questions like the reconstruction of the topographic 
development of the catacomb. 

The Roman Domitilla Catacomb is located on Via Ardeatina in the South of Rome outside the ancient city 
walls. Beginning with some isolated pagan tombs in the 2nd century the Domitilla Catacomb grew in the 3rd 
and 4th century to a large Christian graveyard with the underground basilica of Nereus and Achilleus as a 
place of pilgrimage. The last written document about this catacomb dates back to the 9th century. In 1593 the 
Domitilla Catacomb was rediscovered by Antonio Bosio. He explored some regions of the catacomb and 
prepared the first documentation not only of the Domitilla Catacomb but also of other Roman catacombs [1]. 
In the following centuries several surveys were made of the catacomb but they all concentrated on areas with 
special interest - like an accumulation of paintings [1,2,3]. 

For surveying the geometry of the catacomb a Riegl LSM z420i [4] 3D laser scanner was used. For 
surveying the more than 80 late roman-early Christian paintings a Canon Eos 1Ds (20 and 14mm lenses) was 
used and photos were shot free-hand. To bring the laser scan data and the mesh models, which were created 
from the photos by a photogrammetric reconstruction process, into the same coordinate system, a Leica Total 
Station TCRM 1103i was used. The Total Station helped to measure a fix point net all over the catacomb. In 
11 field campaigns about 2.000 scans were acquired of the more than 11km of galleries and more than 
23.000 photos were captured for the generation of 3D textured mesh models. 

1.1 Contribution 

The contributions of this paper are: 

• A workflow on how to get high resolution textured mesh models from free-hand taken photographs 
of (architectural) cultural heritage sites. 

• An implementation of the “virtual texturing” technique for displaying these models in an interactive 
viewer in real-time. We describe the virtually texturing technique in this paper. We also use our 
implementation of virtual texturing [5] in a combined point and mesh viewer, called Scanopy. 

With this viewer a virtual presentation of the ancient paintings of the Domitilla Catacomb with high textural 
details can be shown together with the point cloud model of the catacomb (consisting of some 2 billion 
points) on an off-the-shelf computer system. By using the virtual texturing technique the amount of data that 
can be handled for texturing the mesh models is not required to fit completely in the graphics or main 
memory of a computer, as it is managed out-of-core. This means that the complete data can be held on 
secondary storage devices, and only the parts required for rendering the current view are streamed to the 
memory of the computer. 

 



 
 

2. PREVIOUS WORK 

Texturing of mesh models is a standard technique to increase the quality of the visual appearance of 
polygon-based geometry by mapping an image or photograph onto the surface described by the polygons 
[6,7]. A requirement for texturing is a mapping of the vertices of the polygonal mesh to coordinates in the 2D 
image, and several well known methods exist to define a valid mapping, one example being “UV 
unwrapping”. When using several images for texturing, it is advantageous to compile a texture atlas from 
those images, and use this single image as source for texturing, as changing a texture binding during 
interactive visualization is a costly operation performance wise [8]. 

When dealing with large amounts of textures, the main memory of the computer might become too small to 
hold all texture data, preventing online access to textures when needed for rendering. Several techniques 
were developed which allow storing the complete texture data on disk and loading only the necessary data 
during rendering. The simplest approach is texture streaming, where textures are loaded on demand from 
disk. Dividing textures into separate tiles increases the granularity at which texture streaming can happen, 
and reduces the amount of wasted memory, first shown in terrain rendering [9]. This approach was enhanced 
by “Clipmapping”, a technique for real-time terrain rendering, where the separate levels of a complete 
mipmap chain (a mipmap chain is a collection of images of gradually reduced size, accompanying the 
original texture, which are used to speed up rendering and reduce aliasing artifacts), including the original 
texture, are each tiled and stored on disk, and depending on the current view position the necessary tiles are 
streamed to memory [10]. Another approach for real-time terrain texturing is to separately calculate the 
necessary mipmap level (and therefore the necessary texture tile) for each polygon that will be rendered, and 
not rely on the mipmap level calculation of the graphics card. This is done by estimating the size of a 
rendered polygon in screen space [11]. For generic geometry another level of indirection during texture 
coordinates calculation is necessary, the so called “pagetable”. With a pagetable the texture management 
much resembles the way how virtual memory is handled in an operating system, therefore it is also called 
virtual texturing (although this term is not always used consistently in literature, and it is sometimes also 
relating to different methods). Virtual texturing allows calculating the required mipmap level for the 
geometry per pixel, which was not feasible with previous methods. This can be done by rendering the 
geometry in a separate render pass into UV space [12] or into screen space [13], and afterwards stream the 
necessary tiles to the graphics card. Also the gaming industry makes use of virtual texturing, as mentioned by 
different game studios [13,14,15], to further increase the realism in state-of-the-art games. 

Several tools exist for visualizing the data recorded by laser scans or created by photogrammetric 
reconstruction. Direct visualization of point-based data is often accomplished with viewers that come with 
the laser scanner or with specialized point rendering algorithms [16,17]. Since point data often becomes 
huge, it is beneficial to use out-of-core techniques and store the whole data on disk, while only rendering the 
currently visible part of the point data [18,19,20,21]. This technique was first shown on models captured by 
the Digital Michelangelo project [22]. The result of a photogrammetric reconstruction is a (sparse or dense 
sampled) point cloud which can then be converted to a mesh model and visualized with standard viewers like 
Blender [23], Maya [24], or MeshLab [25].  

The combination of multi-resolution and multi-modal data is shown in [26,27], where huge data sets are 
collected from cultural heritage sites, which do not fit into the memory of an today’s off-the-shelf computer. 
In both cases the data had to be reduced for visualization, as the original data was too large and could not be 
handled for interactive visualization. In [28] a huge data set of Pompeii is prepared for interactive 
visualization, and the texture data had to be reduced for most textured object, as the full texture data could 
not be fitted into the memory of the graphics card. In contrast to these approaches, we are not required to 
reduce the point cloud data and the texture data and use the original data for interactive visualization, as we 
can handle data that does not fit completely into the memory of a computer. Only the geometric data of the 
mesh models is somewhat reduced, but since the exact geometric reconstruction was not a requirement for 
the visualization of the wall paintings of the catacomb, we deemed this limitation of our interactive 
visualization tool to be acceptable. 

3. CREATING MODELS FROM PHOTOGRAPHS 

The condition of the late Roman-early Christian paintings in the catacomb is in general very good. A survey 
by a 3D laser scanner cannot reproduce the quality of these paintings. With a photogrammetric survey of the 



 
 

paintings it is possible to generate accurate three dimensional models with high quality textures. The 
experience showed that the visual quality of textured mesh models originating from laser scan data is not 
good enough. Especially the connection between geometry and texture in these models does not come up to 
the desired standards. By using photogrammetry the geometry develops out of the texture and discrepancies 
can be minimized.  

To cover a whole 2m x 2m cubiculum with three arcosols (a standard situation in the catacomb) covered with 
paintings needs at least 18 positions of the camera. If the entrance gallery and the entrance wall should be 
modeled too, at least 12 more positions are necessary. By using a so called panoramic head, which allows the 
rotation of the camera around the focal point, photos of the entire cubiculum can be made from the same 
position. After capturing all images of one painting (for large paintings 700 or more images are necessary) 
they are loaded into the software CalibCam [29]. Here the registration of the images can be done semi-
automatically. The exterior calibration of the camera positions can be calculated (using measured tiepoints 
from a total station is also implemented) as well as the interior calibration of the camera and the used lens. 
The lower the calculated error the better the following result of the textured models. 

To create a mesh model one image pair showing the same area of the cubiculum respectively the painting is 
loaded into the software 3DM Analyst [29] and a textured mesh model is created. To cover a whole 
cubiculum many partial models have to be generated. Since these models overlap in many areas it is 
important to create a consistent and closed surface model. By exporting the vertices of each partial model 
from 3DM Analyst and importing them into Geomagic, a closed and, even more important, clean mesh 
model can be created [30,31]. To re-texture the model (color information is lost during the export) the 
images taken for the modeling process together with their orientation matrices are used. This work is done by 
the software 3DImage Software [32]. Figure 1 gives an overview of the complete workflow. 

 

 

Although for the capturing of the images special light panels are used, after the re-texturing process it is 
necessary to adjust the single images in their color and brightness to hide the seams where images are 
stitched together. After finishing this work the meshed and textured model can be imported into Scanopy 
without any further changes and can be displayed together with the point cloud of the Domitilla Catacomb 
where it will be automatically at the right position. 

Since there are more than 80 paintings spread all over the catacomb, and for some textured models more than 
60 images are used, it is essential to find a way to display all these models at once. 

4. VIRTUAL TEXTURING OF MODELS 

For rendering the mesh models of the cubiculae and wall paintings (see Section 4) in real time, we use a 
virtual texturing algorithm. In virtual texturing all images which shall be used for texturing are compiled into 
a single large texture, the “virtual texture”, which in this case resembles a texture atlas [8]. This texture is 
divided into regular tiles, which are then used for texturing instead of the original images. For the whole 
virtual texture a mipmap chain is generated, down to a size of one tile. The mipmap levels in this chain are 
numbered from 0 (for the level with the highest texture resolution, i.e. the resolution of the original images) 
to n (at the n-th level exactly one tile represents the complete virtual texture, at a low resolution). The size of 
a virtual texture is typically between 32K2 and 256K2 texels. Usually the pixels of an image are referred to as 
texels, if the image is used for texturing. The virtual texture and the whole mipmap chain reside on disk, and 
are referred to as the “tile store”. To use the virtual texture, a virtual texturing algorithm has to implement 3 
main parts, which are executed in every rendered frame: 

• Determination of virtual texture tiles that are needed for rendering for the current view point. 
• Streaming these texture tiles into graphics memory. 
• Map the texture from the loaded tiles to the geometry. 

Figure 1: Workflow for the generation of textured mesh models. 



 
 

When creating the virtual texture, the texture coordinates of the geometry have to be adjusted so that they 
point to the right areas in the virtual texture. The buildup of the virtual texture and the offsetting of the 
geometry's texture coordinates are done offline in a pre-process. When the tiles are streamed to the graphics 
card, they are stored in the so called “physical texture”. The physical texture has a certain amount of free 
slots into which tiles can be loaded. During rendering this texture is bound for the fragment shader calls and 
used for all texture lookups of the geometry. Since the texture coordinates of the loaded tiles are not the same 
in the physical texture as they are in the virtual texture, a mapping between texture coordinates is necessary, 
and this is provided by the so called “pagetable texture”. In the pagetable texture each texel corresponds to 
exactly one tile of the virtual texture, including the complete mipmap chain. The pagetable texture stores the 
physical texture coordinates of the corresponding virtual texture tile. If a tile is not available in the physical 
texture, a fallback entry can be stored instead, e.g. the coordinates of the tile for the next available lower-
resolution mipmap level. It is possible to hold the tiles of the highest levels (e.g. levels n, n-1, and n-2) 
always in the physical texture, so that when loading higher-resolution tiles these tiles can be used for 
rendering until the appropriate tiles have arrived. Note that the physical texture is not mipmapped, it only 
stores tiles of different mipmap levels of the virtual texture. 

In the following the 3 main parts of the algorithm are described in more detail. 

4.1 Determination of Virtual Texture Tiles  

The determination of the virtual texture tiles is done per pixel in a pre-rendering pass. This exact tile 
determination in view space is possible by rendering the scene into the frame buffer, and storing in each 
pixel the information which tile coordinates are used for texturing this pixel, including the mipmap level. We 
use OpenGL as graphics API, and mipmap level selection is not defined in the OpenGL specification, it is 
left to the actual OpenGL implementation. Therefore one cannot always rely on calculating the mipmap 
level. Instead a separate texture lookup can be performed in the fragment shader that samples a mipmapped 
texture, which has stored the mipmap level in its texels. The result of this pre-rendering pass is an “image” in 
the frame buffer that contains in its pixels the addresses of all tiles that are necessary for texturing the 
currently visible geometry. Note that the tile addresses will not be unique, as a tile usually covers more than 
just one pixel in the scene. On the other hand this is even necessary for the virtual texturing algorithm to 
work, as it relies on spatial coherency for texturing the geometry. 

When this pre-rendering pass is finished, the frame buffer is read back to the CPU. There the tiles for loading 
from disk are extracted from the buffer and the corresponding requests are sent to the tiles-loading thread. 

4.2 Streaming Tiles into Memory and Updating the Physical Texture 

Streaming the tiles from disk into memory happens after determining the tiles that are visible in the current 
frame. Streaming is done in a background thread, which loads the tiles asynchronously to the rendering 
thread. After loading, the tiles have to be decompressed, as they are stored in a compressed image format like 
JPEG or PNG. If desired the tiles can then be re-compressed to a format that is readable by the GPU, like the 
DXT compression formats. This reduces the memory requirements in graphics memory, but it also reduces 
the visual quality of the texture tiles. Decompression and re-compression can be done in a third thread.  

The next step is to upload the newly loaded tiles into the physical texture on the graphics card. The physical 
texture is stored in a way that hardware filtering can occur when sampling the texture, i.e. as a 2D texture or 
as a texture array. Since current graphics drivers do not support enough layers for texture arrays to store 
enough tiles for a physical texture, we use per default a 2D texture, where the tiles are tightly packed in a 

Figure 2: Overview of the mappings between the different textures  
that are used for rendering the virtual texture to the objects on screen. 



 
 

grid layout. When there is no free position in the physical texture for the newly loaded tiles, then tiles can be 
replaced according to the “least recently used” paradigm [33], where those tiles, which have not been used 
for the longest time, are overwritten by the new tiles. 

Finally, the pagetable texture has to be updated to reflect the changes in the physical texture. When a tile 
becomes available in the physical texture, its coordinates are stored in the corresponding texel in the 
pagetable texture. The fallback entries in the pagetable texture also have to be updated. Updates are done 
from the CPU, as the information which tiles are available in graphics memory, are also managed by the 
CPU. Figure 2 gives an overview of the mappings that occur between the textures that are used for managing 
the tiles. 

4.3 Map Tiles onto Geometry 

During rendering the virtual texture shader, a fragment shader, transforms the virtual texture coordinates of 
the geometry to coordinates in the physical texture, in which the tiles are stored on the graphics card. It does 
so by first sampling the pagetable texture to get the texel that holds the coordinates of the corresponding tile 
in the physical texture. All virtual texture coordinates that refer to one tile fetch the same texel from the 
pagetable texture. When the physical texture coordinates of the tile are known, the right offset within this tile 
is calculated and added to obtain the final physical texture coordinates, and this texture is then sampled at 
these coordinates to color the current pixel. Note that if the entry in the pagetable texture points to a fallback 
entry, the tile of the fallback entry will be used for texturing instead. 

4.4 Further Considerations about Virtual Texturing 

Although the size of a virtual texture is not limited per se, there are currently limitations due to restrictions of 
the graphics card hardware. One limiting factor is the length of the mipmap chain. Each additional level 
increases the size of the pagetable texture by a factor of 4. A mipmap chain of length 11 already results in a 
pagetable texture size of 10242 texels. For larger pagetable texture sizes a considerable performance hit 
occurs when updating the pagetable. Other limiting factors are the tile size and physical texture size. Since 
the physical texture stores all tiles that are needed for texturing the scene from the current viewpoint, the 
physical texture has to be large enough to provide space for the currently visible tiles. For a complex scene 
with many different sub-textures visible at the same time, it is advantageous to have many smaller tiles than 
only a few larger tiles. The tile size cannot be arbitrarily small (the side length of a tile is always an integer 
and a power of 2), as a decreasing tile size increases the number of I/O operations when loading the tiles 
from disk, and it also increases the size of the pagetable texture by a factor of 4. Therefore reasonable tile 
sizes are from 642 to 2562 texels. The physical texture can be chosen as large as the maximum texture size 
that can be handled by the GPU, which is currently about 81922 texels. From these considerations results a 
maximum virtual texture size of 128K2 texels for the highest resolution level with a mipmap chain length 
of 11. 

Creating virtual textures is a problem for common image manipulation programs like Photoshop[34] or 
Gimp[35], since these do not support images of 64K2 pixles or larger, as such images usually cannot even be 
imported or exported. Therefore the virtual texture has to be created in a distinct application, and cannot be 
edited interactively. Also viewing virtually textured models in common 3D-suites like Blender[23] or 
Maya[24] is not possible, since these programs do not support virtual texturing out of the box. We use a set 
of Python scripts to arrange the original images into a texture atlas, which is then divided into tiles, and all 
mipmap levels are created for these tiles. 

5. RESULTS 

A textured mesh model as reconstructed from the free-hand taken photographs can be seen in Figure 3. The 
model is displayed with a standard mesh viewer. For the reconstruction of the geometry of this model 296 
photographs were used. The resulting geometry was then retextured with 32 of these photographs. These 32 
photographs are then used for virtual texturing, although slightly downscaled (from 11 Megapixels to 7.3 
Megapixels), as one of the programs in the model creating workflow can only handle quadratic textures. 



 
 

We implemented the virtual texturing algorithm in a 
separate library [5], and integrated the virtual textured 
models via OpenSceneGraph [36] into the rendering 
pipeline of Scanopy. 

We created a virtual texture of 128K2 texels resolution 
which holds all textures of the mesh models. For testing we 
used a computer with an Intel Q6600 CPU with 4 GB RAM, 
an NVIDIA 285 GTX graphics card with 1 GB VRAM, and 
4 hard disks with 10,000 rpm in a RAID 0+1 configuration. 
In a walkthrough through the Domitilla Catacomb model 
with 1.9 billion points and 29 virtually textured mesh 
models the frame rate never drops below 10 frames-per-
second, although we use 2 separate threads for loading, one 
for points and one for textures. The complete point cloud 
data uses 30 GB on disk (in about 260K files), and the 
virtual texture uses 6 GB on disk (in 1.4 million JPEG files). 
Figure 4 shows two different virtually textured models as 
they are rendered with Scanopy. The point cloud of the Domitilla Catacomb and the virtually textured 
models are displayed at the same time, as can be seen in the right image of Figure 4. When zooming into the 
virtually textured models, the fine details of the paintings on the wall become visible. In the left image of 
Figure 4 even the writings on the wall can be seen. 

   
Figure 4: These images show actual renderings of 2 areas of the Domitilla Catacomb displayed in Scanopy 

and using virtual texturing. In the right image the points from the point cloud can be seen in the distance. 

6. CONCLUSION 

We presented a workflow on how to create mesh models with high quality textures from photographs, and 
how to display such models on an off-the-shelf computer system. Therefore we implemented a virtual 
texturing algorithm, and imported the mesh models of the Domitilla Catacomb into our viewer Scanopy. It is 
possible to view point clouds and virtually textured models together in a scene in real-time, so users can get 
an impression of the catacomb’s extension by navigating through the point cloud, and also view the wall 
paintings very closely and in great detail, which are textured directly with the photographs taken on-site. For 
future work we want to increase the budget on the polygons that we can handle in our tool. 
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